Title: | Computation of Topp-Leone Cauchy Rayleigh (TLCAR ) distribution's properties |
---|---|
Description: | Provides a comprehensive suite of statistical tools for analyzing, simulating, and computing properties of the Topp-Leone Cauchy Rayleigh (TLCAR) distribution, a versatile distribution amalgamating features of the Topp-Leone, Cauchy, and Rayleigh distributions, ideal for modeling intricate, heterogeneous data across scientific domains. See Atchadé, M.N., Bogninou, M.J., and Djibril, A.M. (2023) <doi:10.1007/s44199-023-00066-4> and Atchadé, M.N., Bogninou, M.J., and Djibril, A.M. (2024) <doi:10.1007/s44199-023-00069-1> for further insights. |
Authors: | Mintodê Nicodème Atchadé [aut], Jude Mahoulé Bogninou [aut, cre] |
Maintainer: | Jude Mahoulé Bogninou <[email protected]> |
License: | GPL-2 |
Version: | 0.1.0 |
Built: | 2025-02-14 04:41:36 UTC |
Source: | https://github.com/cran/TLCAR |
This dataset contains failure times measured in hours from an accelerated life test with 59 conductors.
data(ConductorFailureTimes)
data(ConductorFailureTimes)
A numeric vector of failure times.
This dataset contains failure times (measured in hours) obtained from an accelerated life test involving 59 conductors. The data are presented as a numeric vector.
Nasiri, B., et al. (2010). "Bayesian analysis of the accelerated life model with Type-II censoring." Journal of Statistical Planning and Inference, 140(6), 1565-1572.
Schafft, H. A., et al. (1987). "Reproducibility of the accelerated test for electric cable insulation." IEEE Transactions on Electrical Insulation, 22(5), 739-746.
Calculate the cumulative distribution at a given value using the TLCAR distribution.
cTLCAR(x, alpha, a, b, theta, m)
cTLCAR(x, alpha, a, b, theta, m)
x |
Value at which to calculate the CDF. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
The cumulative distribution function (CDF) for the TLCAR distribution is defined as follows:
Cumulative distribution at the given value.
cTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
cTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
Calculate the probability density at a given value using the TLCAR distribution.
dTLCAR(x, alpha, a, b, theta, m)
dTLCAR(x, alpha, a, b, theta, m)
x |
Value at which to calculate the PDF. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
The probability density function (PDF) for the TLCAR distribution is defined as follows:
Probability density at the given value.
dTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
dTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
This function estimates the parameters of the TLCAR distribution while respecting the constraints on the parameters.
fTLCAR(data)
fTLCAR(data)
data |
Numeric vector of data values. |
Numeric vector of estimated parameters.
data(ConductorFailureTimes) estimated_params <- fTLCAR(ConductorFailureTimes)
data(ConductorFailureTimes) estimated_params <- fTLCAR(ConductorFailureTimes)
Generate a graphical plot of the probability density function (PDF) or cumulative distribution function (CDF) for the TLCAR distribution.
ploTLCAR(x, alpha, a, b, theta, m, type = "pdf")
ploTLCAR(x, alpha, a, b, theta, m, type = "pdf")
x |
The range of values to plot the distribution. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
type |
The type of plot to generate: "pdf" for PDF plot, "cdf" for CDF plot. |
A graphical plot of the TLCAR distribution.
ploTLCAR(x = seq(0, 10, by = 0.1), alpha = 0.5, a = 1, b = 0, theta = 2, m = 1, type = "pdf")
ploTLCAR(x = seq(0, 10, by = 0.1), alpha = 0.5, a = 1, b = 0, theta = 2, m = 1, type = "pdf")
Calculate the quantile value for a given probability using the TLCAR distribution.
qTLCAR(p, alpha, a, b, theta, m)
qTLCAR(p, alpha, a, b, theta, m)
p |
Probability value (between 0 and 1). |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
Numeric value representing the quantile.
qTLCAR(p = 0.5, alpha = 1, a = 1, b = 0, theta = 3, m = 1)
qTLCAR(p = 0.5, alpha = 1, a = 1, b = 0, theta = 3, m = 1)
Generate a random sample from the TLCAR distribution using the quantile function.
rTLCAR(n, alpha, a, b, theta, m)
rTLCAR(n, alpha, a, b, theta, m)
n |
Number of observations in the sample. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
Random sample from the TLCAR distribution.
# Generate a random sample with 100 observations using estimated parameters sample <- rTLCAR(n = 100, alpha = 1, a = 1, b = 0, theta = 3, m = 1)
# Generate a random sample with 100 observations using estimated parameters sample <- rTLCAR(n = 100, alpha = 1, a = 1, b = 0, theta = 3, m = 1)
This function estimates the parameters of the TLCAR distribution while respecting the constraints on the parameters. It plots the histogram of the data along with the estimated density curve.
sTLCAR(data)
sTLCAR(data)
data |
Numeric vector of data values. |
Numeric vector of estimated parameters.
data(ConductorFailureTimes) sTLCAR(ConductorFailureTimes)
data(ConductorFailureTimes) sTLCAR(ConductorFailureTimes)
This function calculates a temporary variable used in the TLCAR distribution density function.
temp_var(x, theta, a, b, m)
temp_var(x, theta, a, b, m)
x |
Numeric vector of values at which to calculate the temporary variable. |
theta |
Parameter representing the scale of the Rayleigh component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
m |
Additional parameter. |
Numeric vector of calculated temporary variable values
This dataset contains tree diameter measurements (in cm) for Teak trees in the Agrimey sector in Benin.
data(Tree_diameters)
data(Tree_diameters)
A numeric vector of tree diameter measurements (in cm).